Use of a Variant to Measure New Events Converging

fixed

variables: a, b, c

invariants:

inv1 1: $a \in \mathbb{N}$ inv1 2: $b \in \mathbb{N}$

inv1 3: $c \in \mathbb{N}$

inv1 4: a+b+c=n

inv1_5: $a = 0 \lor c = 0$

ML out when a+b < dc = 0

then a := a + 1end

MI in when c > 0then c := c - 1

end

II in when a > 0then a:= a – 1 b := b + 1end

variant: 2 · a + b

IL out when b > 0a = 0then b := b - 1 $c := \overline{c+1}$ end

Variants for New Events: 2 · a + b

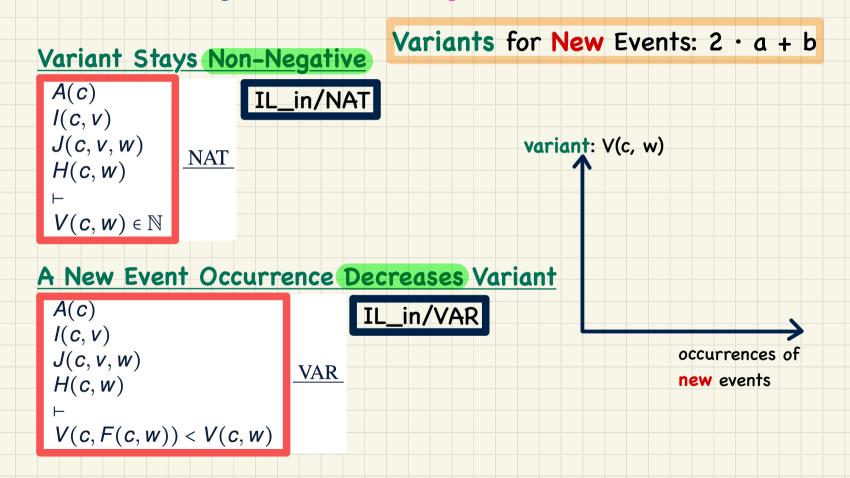
a = 1 $a = 2 \cdot a = 1$ a = 0 a = 0 a = 0 a = 0b = 0 b = 0 b = 0 b = 1 b = 2 b = 1 b = 0 b = 0

<init, ML_out, ML_out, IL_in, IL_in, IL_out, IL_out, ML_in, ML_in >

$$c = 0$$
 $c = 0$ $c = 0$ $c = 0$ $c = 0$ $c = 1$ $c = 2$. $c = 1$. $c = 0$

concrete events

PO of Convergence/Non-Divergence/Livelock Freedom



Example Inference Rules

$$\frac{H, \neg P \vdash Q}{H \vdash P \lor Q} \quad \mathbf{OR} \cdot \mathbf{R}$$

$$\frac{H, P, Q \vdash R}{H, P \land Q \vdash R} \quad \textbf{AND_L}$$

$$\frac{H \vdash P \qquad H \vdash Q}{H \vdash P \land Q} \quad \textbf{AND}_{\blacksquare} \textbf{R}$$